MATH 2028 Honours Advanced Calculus II
 2023-24 Term 1
 Problem Set 8
 due on Nov 24, 2023 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: All curves, surfaces and vector fields are inside \mathbb{R}^{3}. We will use U to denote an open subset of \mathbb{R}^{3}.

Problems to hand in

1. Prove that
(a) $\nabla \times(\nabla f)=0$ for any C^{2} function $f: U \rightarrow \mathbb{R}$;
(b) $\nabla \cdot(\nabla \times F)=0$ for any C^{2} vector field $F: U \rightarrow \mathbb{R}^{3}$.
2. Compute the flux $\int_{S}(\nabla \times F) \cdot \vec{n} d \sigma$ where
(a) $F(x, y, z)=\left(x^{2}+y, y z, x-z^{2}\right)$ and S is the triangle defined by the plane $2 x+y+2 z=2$ inside the first octant, oriented by the unit normal pointing away from the origin.
(b) $F(x, y, z)=(x, y, 0)$ and S is the paraboloid $z=x^{2}+y^{2}$ inside the cylinder $x^{2}+y^{2}=4$, oriented by the upward pointing normal.
3. Let $F(x, y, z)=\left(y e^{z}, x e^{z}, x y e^{z}\right)$ and C be a simple closed curve which is the boundary of a surface S. Show that $\int_{C} F \cdot d \vec{r}=0$.
4. Find $\iint_{S} F \cdot \vec{n} d \sigma$ where
(a) $F(x, y, z)=\left(2 x, y^{2}, z^{2}\right)$ and S is the unit sphere centered at the origin, oriented by the outward unit normal;
(b) $F(x, y, z)=(x+y, y+z, x+z)$ and S is the tetrahedron bounded by the coordinate planes and the plane $x+y+z=1$, oriented by the outward unit normal.

Suggested Exercises

1. Compute the curl and divergence of the following vector fields:
(a) $F(x, y, z)=\left(x^{2}, x y z, y z^{2}\right)$
(b) $F(x, y, z)=(y \log x, x \log y, x y \log z)$
(c) $F(x, y, z)=\left(x^{2}, \sin x y, e^{x} y z\right)$
(d) $F(x, y, z)=\left(e^{x y} \sin z, e^{x z} \sin y, e^{y z} \cos x\right)$
2. A function $f: U \rightarrow \mathbb{R}$ is said to be harmonic if $\Delta f:=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0$.
(a) Prove that the functions $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ and $f(x, y, z)=x^{2}-y^{2}+2 z$ are harmonic on their maximal domain of definition.
(b) Show that $\nabla \cdot(\nabla f)=0$ if f is harmonic.
3. Let $F(x, y, z)=\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ satisfies $\nabla \cdot F=0$ and $\nabla \times F=0$ on $\mathbb{R}^{3} \backslash\{0\}$.
4. Calculate the integral $\iint_{S}(\nabla \times F) \cdot \vec{n} d \sigma$ for the vector field $F(x, y, z)=\left(-y, x^{2}, z^{3}\right)$ and the surface S given by $x^{2}+y^{2}+z^{2}=1$ with $-1 / 2 \leq z \leq 1$.
5. Prove the following identities:
(a) $\nabla \cdot(F \times G)=G \cdot(\nabla \times F)-F \cdot(\nabla \times G)$ for any vector fields F, G.
(b) $\nabla \cdot(\nabla f \times \nabla g)=0$ for any functions f, g.
6. Verify Stokes theorem for
(a) $F(x, y, z)=(z, x, y)$ and S defined by $z=4-x^{2}-y^{2}$ and $z \geq 0$;
(b) $F(x, y, z)=(x, z,-y)$ and S is the portion of the sphere of radius 2 centered at the origin with $y \geq 0$;
(c) $F(x, y, z)=\left(y+x, x+z, z^{2}\right)$ and S is the portion of the cone $z^{2}=x^{2}+y^{2}$ with $0 \leq z \leq 1$.
7. Compute the flux $\int_{S}(\nabla \times F) \cdot \vec{n} d \sigma$ using Stokes theorem where
(a) $F(x, y, z)=(y, z, x)$ and S is the triangle with vertices at $(1,0,0),(0,1,0)$ and $(0,0,1)$, oriented by the unit normal pointing away from the origin;
(b) $F(x, y, z)=(x+y, y-z, x+y+z)$ and S is the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}$ with $z \geq 0$, oriented by the upward pointing normal.
8. Let C be the curve parametrized by

$$
\gamma(t)=(\cos t, \sin t, \sin t) \quad \text { where } t \in[0,2 \pi]
$$

Compute the line integral

$$
\int_{C} z d x+2 x d y+y^{2} d z
$$

(a) directly from the definition of line integrals; and (b) using Stokes Theorem.
9. Let C be a closed curve which is the boundary of a surface S. Prove that
(a) $\int_{C} f \nabla g \cdot d \vec{r}=\iint_{S}(\nabla f \times \nabla g) \cdot \vec{n} d \sigma$;
(b) $\int_{C}(f \nabla g+g \nabla f) \cdot d \vec{r}=0$.
10. Compute $\iint_{S} F \cdot \vec{n} d \sigma$ for the vector field $F(x, y, z)=\left(x y, y^{2}, y^{2}\right)$ over the unit cube $S=[0,1] \times$ $[0,1] \times[0,1]$, oriented by the outward normal.
11. Find $\iint_{S} F \cdot \vec{n} d \sigma$ where
(a) $F(x, y, z)=\left(x^{3}, y^{3}, z^{3}\right)$ and S is the unit sphere centered at the origin, oriented by the outward unit normal;
(b) $F(x, y, z)=(x+y, y+z, x+z)$ and S is the paraboloid $z=4-x^{2}-y^{2}$ oriented by the upward unit normal;
(c) $F(x, y, z)=(2 x, 3 y, z)$ and S is the closed surface consisting of the cylinder $x^{2}+y^{2}=4$ and the planes $z=1, z=3$, oriented by the outward unit normal;
12. Suppose Ω is the interior of a closed surface S. Let $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be C^{2} functions. Prove the following Green's identities:
(a) $\iint_{S}(f \nabla g) \cdot \vec{n} d \sigma=\iiint_{\Omega}(f \Delta g+\nabla f \cdot \nabla g) d V$;
(b) $\iint_{S}(f \nabla g-g \nabla f) \cdot \vec{v} d \sigma=\iiint_{\Omega}(f \Delta g-g \Delta f) d V$;

Here, $\Delta f:=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$.
13. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded open subset with boundary $\partial \Omega=S$ which is a closed surface, oriented by the outward unit normal \vec{n}. Let $F(x, y, z)=\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$. Assume that $0 \notin S$.
(a) Suppose that $0 \notin \Omega$. Show that

$$
\iint_{S} F \cdot \vec{n} d \sigma=0
$$

(a) Suppose that $0 \in \Omega$. Show that

$$
\iint_{S} F \cdot \vec{n} d \sigma=4 \pi
$$

Challenging Exercises

1. Let $F: U \rightarrow \mathbb{R}^{3}$ be a C^{1} vector field defined on an open subset $U \subset \mathbb{R}^{3}$. Fix $p \in U$. Denote $B_{r}(p)$ be the closed ball of radius $r>0$ centered at p and $S_{r}(p)=\partial B_{r}(p)$ be the sphere of radius $r>0$ centered at p, with outward pointing unit normal \vec{n}. Prove that

$$
(\nabla \cdot F)(p)=\lim _{r \rightarrow 0} \frac{1}{\operatorname{Vol}\left(B_{r}(p)\right)} \iint_{S_{r}(p)} F \cdot \vec{n} d \sigma
$$

2. Let $S \subset \mathbb{R}^{3}$ be a surface and $F: U \rightarrow \mathbb{R}^{3}$ be a C^{1} vector field defined on an open set $U \subset \mathbb{R}^{3}$ containing S. Fix $p \in S$. Denote $D_{r}(p):=\{x \in S| | x-p \mid \leq r\}$ and $C_{r}(p)=\{x \in S| | x-p \mid=r\}$. Suppose S is oriented by the unit normal \vec{n} and so is $C_{r}(p)$ as the boundary of $D_{r}(p)$ (which you can assume to be C^{1}). Prove that

$$
(\nabla \times F)(p) \cdot \vec{n}(p)=\lim _{r \rightarrow 0} \frac{1}{\operatorname{Area}\left(D_{r}(p)\right)} \int_{C_{r}(p)} F \cdot d \vec{r}
$$

